An L Theory of Sparse Graph Convergence Ii: Ld Convergence, Quotients, and Right Convergence
نویسندگان
چکیده
We extend the Lp theory of sparse graph limits, which was introduced in a companion paper, by analyzing different notions of convergence. Under suitable restrictions on node weights, we prove the equivalence of metric convergence, quotient convergence, microcanonical ground state energy convergence, microcanonical free energy convergence, and large deviation convergence. Our theorems extend the broad applicability of dense graph convergence to all sparse graphs with unbounded average degree, while the proofs require new techniques based on uniform upper regularity. Examples to which our theory applies include stochastic block models, power law graphs, and sparse versions of W -random graphs.
منابع مشابه
Convergent sequences of sparse graphs: A large deviations approach
In this paper we introduce a new notion of convergence of sparse graphs which we call Large Deviations or LD-convergence and which is based on the theory of large deviations. The notion is introduced by ”decorating” the nodes of the graph with random uniform i.i.d. weights and constructing random measures on [0, 1] and [0, 1]2 based on the decoration of nodes and edges. A graph sequence is defi...
متن کاملFurther study on $L$-fuzzy Q-convergence structures
In this paper, we discuss the equivalent conditions of pretopological and topological $L$-fuzzy Q-convergence structures and define $T_{0},~T_{1},~T_{2}$-separation axioms in $L$-fuzzy Q-convergence space. {Furthermore, $L$-ordered Q-convergence structure is introduced and its relation with $L$-fuzzy Q-convergence structure is studied in a categorical sense}.
متن کاملFuzzy convergence structures in the framework of L-convex spaces
In this paper, fuzzy convergence theory in the framework of $L$-convex spaces is introduced. Firstly, the concept of $L$-convex remote-neighborhood spaces is introduced and it is shown that the resulting category is isomorphic to that of $L$-convex spaces. Secondly, by means of $L$-convex ideals, the notion of $L$-convergence spaces is introduced and it is proved that the category of $L$-con...
متن کاملGraph Convergence for H(.,.)-co-Accretive Mapping with over-Relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem
In this paper, we use the concept of graph convergence of H(.,.)-co-accretive mapping introduced by [R. Ahmad, M. Akram, M. Dilshad, Graph convergence for the H(.,.)-co-accretive mapping with an application, Bull. Malays. Math. Sci. Soc., doi: 10.1007/s40840-014-0103-z, 2014$] and define an over-relaxed proximal point method to obtain the solution of a generalized variational inclusion problem ...
متن کاملOn convergence of certain nonlinear Durrmeyer operators at Lebesgue points
The aim of this paper is to study the behaviour of certain sequence of nonlinear Durrmeyer operators $ND_{n}f$ of the form $$(ND_{n}f)(x)=intlimits_{0}^{1}K_{n}left( x,t,fleft( tright) right) dt,,,0leq xleq 1,,,,,,nin mathbb{N}, $$ acting on bounded functions on an interval $left[ 0,1right] ,$ where $% K_{n}left( x,t,uright) $ satisfies some suitable assumptions. Here we estimate the rate...
متن کامل